圆周角定理推广,如何证明同弦的圆周角相等?

最后更新 : 2021.05.09  

错,应该是互补或相等。同弦所对圆周角有2种情况1圆周角定理推广、是同弧所对的圆周角∵定理一条弧所对的圆周角等于它所对的圆心角的一半又∵一条弧只对应1个圆心角∴同弧所对的圆周角相等,等于它所对的圆心角的一半2、不同弧所对的圆周角∵定理一条弧所对的圆周角等于它所对的圆心角的一半∴一条弧所对的圆周角等于圆心角的一半而令一条弧所对的圆周角等于(360度-前一条弧所对的圆心角)的一半∴两条弧所对的圆周角等于(前一条弧所对的圆心角+360度-前一条弧所对的圆心角)的一半∴两条弧所对的圆周角等于180度∴不同弧所对的圆周角互补∴同弦所对圆周角互补或相等

圆周角定理推广,如何证明同弦的圆周角相等?插图

初中数学定理(竞赛) (圆)

圆的直径连接两头(一端在圆上,一端在直径上)

圆周角定理推广,如何证明同弦的圆周角相等?插图1

这个角是直角

这叫垂径定理

圆周角定理 是

多少

——乘圆面积或周长=这个扇行的面积或那条弧

360

别的我就不知道了

.圆是以圆心为对称中心的中心对称图形;围绕圆心旋转任意一个角度α,都能够与原来的重合.

2.顶点在圆心的角叫做圆心角.圆心到弦的距离叫做弦心距.

圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理)

切线长定理

垂径定理

圆周角定理

弦切角定理

四圆定理

3.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.

4.在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.

5.把整个圆周等分成360份,每一份弧是1°的弧.圆心角的度数和它所对的弧的度数相等.

6.圆是中心对称图形,即圆绕其对称中心(圆心)旋转180°后能够与原来图形重合,这一性质不难理解.圆和其他中心对称图形不同,它还具有旋转不变性,即围绕圆心旋转任意一个角度,都能够与原来的图形重合.

7.垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧

8.(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

9.圆的两条平行弦所夹的弧相等

10.(1)一条弧所对的圆周角等于它所对的圆心角的一半.

(2)同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.

(3)半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.

(4)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.

11.(1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.

(2)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

(3)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

(4)弦的垂直平分线经过圆心,并且平分弦所对的两条弦.

(5)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.

(6)圆的两条平行弦所夹的弧度数相等.

12.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

13.平分弦(不是直径)的直径垂直与弦,并且平分弦所对的两条弧.

14.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距也相等.

15.在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角相等,所对的弦的弦心距也相等.

16.同一个弧有无数个相对的圆周角.

17.弧的比等于弧所对的圆心角的比.

18.圆的内接四边形的对角互补或相等.

19.不在同一条直线上的三个点能确定一个圆.

20.直径是圆中最长的弦.

21.一条弦把一个圆分成一个优弧和一个劣弧.

相关阅读

- END -

40
0